
Sinus/Cosinus Eigenschaften
a = π

180◦ · α
◦

α◦ = 180◦

π · a
sin(α) = cos(α− π

2 )
cos(α) = sin(α+ π

2 )
− cos(α) = cos(α+ π)

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)
cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

Sinussignal
s(t) = A cos(ωt+ ϕ) = A cos( 2π

T t+ ϕ)
ω = 2πf = 2π

T

Abtastung/Aliasing
Abtastintervall Ts
Abtastrate r = 1

Ts

s[n] = s(n · Ts) = s(nr )
s[n] = A cos(ωTsn+ ϕ) = A cos(ω̂n+ ϕ)
ω̂ = ωTs = ω

r

Alias-Frequenzen: ω̂k = ω̂0 + 2πk und ω̂k = 2πk − ω̂0

Haupt-Aliasfrequenz: −π < ω̂0 ≤ π
Abtast-Theorem: Fehlerfreie Rekonstruktion, wenn r > 2fmax

Komplexe Zahlen
z = x+ jy

|z| =
√
x2 + y2

|z| = |z∗|
z · z∗ = |z|2
z + z∗ = 2Re{z}

1
j = −j

ejα = cos(α) + j sin(α)
ej0 = 1; ej

π
2 = j; ejπ = −1; e−j

π
2 = −j

z = |z| · ejα = |z| · (cos(α) + j sin(α))

α = arg(z) =

{
arctan( yx ) x > 0
arctan( yx )± π x < 0

2 · cos(α) = ejα + e−jα

2j · sin(α) = ejα − e−jα

Komplexes Sinussignal
z(t) = Aej(ωt+ϕ) = A cos(ωt+ ϕ) + j ·A sin(ωt+ ϕ)
x(t) = Re{Aej(ωt+ϕ)} = A cos(ωt+ ϕ)

= 1
2Xe

jωt + 1
2X
∗e−jωt

X = Aejϕ(Phasor)

Summe/Linearkombination von Sinussignalen

x(t) =
N∑
k=1

Re{Akejϕkejωt} (gleiche Frequenz)

= Re{
(

N∑
k=1

Xk

)
ejωt} mit Xk = Ake

jϕk

= Re{Aejϕejωt}
= A cos(ωt+ ϕ)

s(t) =
N∑

k=−N
ake

jωkt mit ω0 = 0 und

a0 = X0 (Gleichanteil)
ak = 1

2Xk

a−k = 1
2X
∗
k und ω−k = −ωk

Produkt von Sinussignalen
Mit ωM = 1

2 (ω1 + ω2) und ω∆ = 1
2 (ω2 − ω1) :

s(t) = 2 · cos(ωM t) · cos(ω∆t)
= cos((ωM + ω∆)t) + cos((ωM − ω∆)t)
= cos(ω2t) + cos(ω1t)

s(t) = 2 · sin(ωM t) · cos(ω∆t)
= sin(ω2t) + sin(ω1t)

Schwebungstöne: Add. zweier Sinusig. ähnl. Freq. ω1 und ω2.

Fourier-Reihe

s(t) =
+∞∑

k=−∞
ake

jkωT t

Im Spektrum gilt: ωk = kωT (Spektrallinien äquidistant)

Bestimmung der Grundfrequenz:

ωT =

{
ω1 falls a1 6= 0
ggT (ω1, ω2, . . .) falls a1 = 0

Fourier-Analyse

(s1, s2) =
T∫
0

s1(t) · s∗2(t)dt (Skalarprodukt)

ak = 1
T

T∫
0

s(t)e−jωT ktdt (Sonderfall bei k = 0)(
Geometrische Reihe :

n∑
k=0

qk = 1−qn+1

1−q

)

Filter

s[n] =
+∞∑

k=−∞
s[k]δ[n− k] (Signal über Einheitsimpuls)

h[n] =
+∞∑

k=−∞
b[k]δ[n− k] = b[n] (Impulsantwort)

g[n] = s[n]∗h[n] =
+∞∑

k=−∞
h[k]s[n−k] (Faltung/Differenzengl.)

Kaskadierung: h[n] = h1[n] ∗ h2[n] ∗ . . .

Faltung ist kommutativ, assoziativ, δ[n] ist neutrales Element.
Filter ist kausal, wenn k ≥ 0. (sieht nicht in Zukunft)

u[n] =
∞∑
k=0

δ[n− k] =

{
1 n ≥ 0
0 n < 0

δ[n] = u[n]− u[n− 1]

LSI-Systeme
linear, zeit/verschiebungs-invariant

zeitinvariant: s[n− n0]⇒ g[n− n0]
linear: s[n] = a · s1[n] + b · s2[n]⇒ g[n] = a · g1[n] + b · g2[n]

Jedes FIR-Filter ist ein LSI-System.

Übertragungsfunktion (Fouriertransformation)

S(ω̂) =
+∞∑

n=−∞
s[n]e−jω̂n (Spektrum)

H(ω̂) =
+∞∑

n=−∞
h[n]e−jω̂n = |H(ω̂)|ejϑ(ω̂)

G(ω̂) = S(ω̂) ·H(ω̂)

Kaskadierung: H(ω̂) = H1(ω̂) ·H2(ω̂) · . . .

Inverse Fouriertransformation:

h[n] = 1
2π

+π∫
−π

H(ω̂)ejω̂ndω̂

H(ω̂) = H∗(−ω̂) und H(ω̂) ist 2π-periodisch.

Amplitudengang: |H(ω̂)| |H(ω̂)| = |H(−ω̂)|
Phasengang: ϑ(ω̂) ϑ(ω̂) = −ϑ(−ω̂)

Gleitender Mittelwert der Länge L (h[n] = 1
L

∑L−1
k=0 δ[n− k]):

⇒ Dirichlet-Funktion: H(ω̂) = sin(L2 ω̂)

L·sin( ω̂2 )
e−jω̂

L−1
2

1



z-Transformation

Sz(z) =
N∑
k=0

s[k]z−k mit z = ejω̂

Hz(z) =
N∑
k=0

h[k]z−k (Systemfunktion)

Gz(z) = Hz(z) · Sz(z)

Kaskadierung: Hz(z) = Hz1(z) ·Hz2(z) · . . .

Erweiterung: z = rejω̂

Shift: s[n− n0] = s[n] ∗ δ[n− n0]⇒ z−n0 · Sz(z)

Faktorisierung entspricht Zerlegung des LSI-Sytems!

Nulling Filter

1. Ordnung: Hz(z) = 1− z1z
−1 = z−z1

z

Mit |z1| = 1 und z1 reell
⇒ z1 = 1 oder z1 = −1
⇒ ω̂1 = 0 oder ω̂1 = π

2. Ordnung: Hz(z) = (1− z1z
−1)(1− z∗1z−1)

= 1− 2 cos(ω̂1) · z−1 + z−2

Blendet gezielt die Frequenzen ω̂1 und
ω̂2 = −ω̂1 aus.

Bandpass Filter
1. M äquidistante Nullstellen:

zk = ej
2πk
M , k = 1, . . . ,M

⇒ PM (z) = 1− z−M = zM−1
zM

= z−M ·
M∏
k=1

(z − zk)

2. Nullstellen im Durchlassbereich und Umgebung entfernen:

ej
2πm
M = ejω̂m ⇒ m = M ·ω̂m

2π

⇒ mmin = m− d ≤ k ≤ m+ d = mmax

⇒ Hz(z) = PM (z)
mmax∏
k=mmin

(1−zkz−1)(1−z∗kz−1)

Skalarprodukte
(x, y) = x · y = xT y = x1y1 + . . .+ xnyn mit x, y ∈ Rn

(x, y) = x · y∗ = xT y∗ = x1y
∗
1 + . . .+ xny

∗
n mit x, y ∈ Cn

vk[n] = ej
2π
N kn (k = 0, . . . , N − 1) vl[n] = ej

2π
N ln (l = 0, . . . , N − 1) (diskrete Sinusfkt. mit ω̂ = 2π

N k)

(vk, vl) =
N−1∑
n=0

vk[n]v∗l [n] =
N−1∑
n=0

ej
2π
N n(k−l) = 1−ej2π(k−l)

1−ej
2π
N

(k−l) =

{
N für k = l

0 für k 6= l

⇒ vk, vl sind orthogonal und es gilt: ||vk|| =
√
N.

g[n] = s[n] ∗ h[n] =
N−1∑
k=0

h[k]s[n− k] = (h, s) mit s = [s[n], . . . , s[n− (N − 1)]]T ∈ Rn und h = [h[0], . . . , h[N − 1]]T ∈ Rn

S(ω̂) =
N−1∑
n=0

s[n]e−jω̂n =
N−1∑
n=0

s[n]
(
ejω̂n

)∗ = (s, vω̂) mit s = [s[0], . . . , s[N−1]]T ∈ Rn und vω̂ = [1, ejω̂, . . . , ejω̂(N−1)]T ∈ Cn

Diskrete Fouriertransformation (DFT)
N diskrete äquidistante Frequenzen:

ω̂k = 2π
N k (k = 0, . . . , N − 1)

Sd[k] = S(ω̂ = 2π
N k) =

N−1∑
n=0

s[n]e−j
2π
N kn

DFT tastet S(ω̂) äquidistant mit Abstand 2π
N ab.

DFT ist periodisch mit N.

Sd[N − k] = Sd[−k] = S∗d [k]

Inverse DFT

s[n] = 1
N

N−1∑
k=0

Sd[k]ej
2π
N kn

Skalarprodukt und DFT
s = [s[0], . . . , s[N − 1]]T ∈ Rn

vk = [vk[0], . . . , vk[N − 1]]T ∈ Cn mit vk[n] = ej
2π
N kn

Sd[k] =
N−1∑
n=0

s[n]
(
ej

2π
N kn

)∗
= (s, vk) = (v∗k, s) = v∗Tk · s

Fouriermatrix

Sd = W · s

W =

 v∗0 [0] · · · v∗0 [N − 1]
...

. . .
...

v∗N−1[0] · · · v∗N−1[N − 1]



=


1 1 · · · 1
1 e−j

2π
N · · · e−j

2π
N (N−1)

...
...

. . .
...

1 e−j
2π
N (N−1) · · · e−j

2π
N (N−1)2


Inverse Fouriermatrix:

W−1 = 1
N W ∗

⇒ s = 1
N W ∗ · Sd

MATLAB-Funktionen
stem(t, s)/plot(t, s) z.B. stem([0:0.2:2*pi], sin([0:0.2:2*pi]))
compass(z) z.B. compass([exp(j*pi/2), exp(j*pi/4)])
conv(s, h) z.B. conv([1, 1, 1, 1, 1], [1/4, 1/4, 1/4, 1/4])
poly(Nullstellen) z.B. poly([1 2 3])
roots(Polynom) z.B. roots([1 -6 11 -6])
zplane(Nullstellen, Pole) z.B. zplane([1; -1; j], [0; 0])

H = freqz(h, 1, omega) z.B.:
omega = [-pi : 0.001 : pi];
H = freqz([1/4, 1/4, 1/4, 1/4], 1, omega);
plot(omega, abs(H))
plot(omega, angle(H))

abs(z) Betrag
angle(z) Phase, wie atan2(imag(z), real(z))

DFT = fft(s) z.B.: fft([0 1 2 3 4 5 4 3 2 1 0])
fftshift(DFT)
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